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Abstract

The total space of the spinor bundle on the four-dimensional sphereS4 is a quaternionic line
bundle that admits a metric ofSpin(7) holonomy. We consider octonionic Yang–Mills instanton on
this eight-dimensional gravitational instanton. This is a higher dimensional generalization of (anti-)
self-dual instanton on the Eguchi-Hanson space. We propose an ansatz forSpin(7) Yang–Mills
field and derive a system of non-linear ordinary differential equations. The solutions are classified
according to the asymptotic behavior at infinity. We give a complete solution when the gauge group
is reduced to a product ofSU(2) subalgebras inSpin(7). The existence of more generalSpin(7)
valued solutions can be seen by making an asymptotic expansion. © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Instantons and soliton solutions have played a prominent role in our understanding of
non-perturbative dynamics and dualities in gauge field theories and string theory. It has
been observed that fundamental examples of topological solutions are associated with the
four Hopf fibrations of spheres, which in turn are related to the division algebras of real
numbersR, complex numbersC, quaternionsH and octonionsO [1–3]. The kink solution
in 1 + 1 dimensions, the Dirac monopole in three dimensions and theSU(2) Yang–Mills
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instanton in four dimensions correspond to the first three algebras. In this paper we will
bring into focus eight-dimensional instantons that corresponds to the octonions.

If the theory is promoted to a supersymmetric (SUSY) theory, these topological solutions
obtain a new feature. That is, they are characterized as BPS states that preserve a fraction of
SUSY. Roughly speaking a first order soliton equation is a “square root” of the equation of
motion for bosons and hence appears in the SUSY transformations of fermions. Solutions
that make the SUSY variation of fermions vanishing give purely bosonic configurations
which preserve (or break) some portions of supersymmetry. It is interesting that there is
also a relation between the four division algebras and the existence of supersymmetric
pure Yang–Mills theory and superstring theory ind = 3, 4, 6, 10 [4,5]. Thus we see there
are amusing links among instanton, supersymmetry and the division algebra. From this
viewpoint octonionic instanton that will be featured in the following is related to SUSY
Yang–Mills and superstring theory in 10 dimensions.

Topological quantum field theories enter naturally in these connections. Especially, topo-
logical Yang–Mills theories in two and four dimensions are associated with the complex
numbers and the quaternions, respectively. Furthermore, one can construct an eight- dimen-
sional cohomological Yang–Mills theory based the octonionic instanton equation [6–8],
though it makes sense only on a manifold of restricted holonomy. It is promising that this
BRST cohomological theory probes the moduli space of the octonionic instanton equation.
But how this is achieved actually depends on our finding an appropriate compactification of
the moduli space. In the case of four-dimensional instantons we need the point-like (ideal)
instantons to compactify the moduli space. In [9] it has been argued that a natural higher
dimensional analogue of ideal (point-like) instanton is that lives on the normal bundle over
a supersymmetric cycle (or a calibrated submanifold) that has codimension four. This ar-
gument gives a good motivation for looking at higher dimensional instanton on theR4

bundle.
Fortunately an eight-dimensional metric that is prepared for this purpose has been pro-

vided in [10–12]. It is a metric ofSpin(7) holonomy on theR4 bundle overS4, which is an
example of a quaternionic line bundle over a quaternionic Kähler manifold. In this paper
we consider the octonionic Yang–Mills instanton on thisSpin(7) holonomy manifold. As
will be shown in Section 2 this metric is a natural eight-dimensional generalization of the
Eguchi-Hanson metric. The geometry of quaternions replaces the role of complex numbers
in the Eguchi-Hanson space whose global structure is the canonical line bundle over the
complex projective spaceP1(C) ∼= S2. Thus we can say that our instanton is a higher
dimensional generalization of (anti-)self-dual instanton on the ALE space. It is known that
the spinor bundle over a four-dimensional spin manifold hasSpin(7) holonomy in general.
The quaterninonic line bundle in this paper is identified with the spinor bundle overS4 (see
Appendix A).

The paper is organized as follows; in Section 2 we introduce the metric of Gibbons–Page–
Pope and set up notations that are necessary in the following sections. The metric ofSpin(7)
holonomy is a solution to the octonionic self-duality for spin connections. We show that
the same condition is obtained as a flow equation in a SUSY quantum mechanics of weight
functions appearing in our ansatz of the metric. In a course of explaining the implication of
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the octonionic self-duality, some algebraic properties ofSpin(7) as a subalgebra ofSO(8)
are reviewed briefly. We propose our ansatz forSpin(7) Yang–Mills field in Section 3, and
write down the octonionic Yang–Mills instanton equation. To solve the instanton equation
we first make a classification of solutions according to the asymptotic behavior at infinity
and find six classes. There are reduced solutions in the sense that the actual gauge group is
reduced to a direct product ofSU(2) factors inSpin(7). For these class of solutions we present
almost complete answer in Section 4. Unfortunately for other solutions we are not able to
find solutions in analytically closed form. In Section 5 we perform asymptotic expansion to
see the existence of general solutions. The final section is devoted to discussion. We point
out the relation to seven-dimensional Chern–Simons theory. We also make a remark on the
energy–momentum tensor of higher dimensional Yang–Mills instantons.

2. Gravitational instanton in eight dimensions

We first derive a metric ofSpin(7) holonomy from the viewpoint of supersymmetric
quantum mechanics. This metric was originally obtained by Gibbons–Page–Pope [10,11]
and further discussed in [12]. (See also [13] for more intrinsic definition of the metric.) We
take the following ansatz for a metric on theR4 bundle overS4:

dŝ2 = f 2 dr2 + g2 ds2 + h2(σi − Ai)
2, (2.1)

where

ds2 = dµ2 + 1
4 sin2µ · 62

i (2.2)

is the standard metric on the base spaceS4. We assume thatf, g andh are functions of the
radial co-ordinater. 6i andσi are left-invariant one-form ofSU(2) manifold:

d6i = −1
2εijk6j ∧ 6k, dσi = −1

2εijkσj ∧ σk. (2.3)

Note thatSU(2) ∼= Sp(1) is the space of quaternions with unit norm. FinallyAi represents
the basicSU(2) instanton onS4:

Ai = cos2
µ

2
· 6i. (2.4)

The vielbein (orthonormal frame) of the above metric is

ei = 1
2g(r) sinµ · 6i, eî = h(r)(σi − Ai), e7 = f (r) dr,

e8 = g(r) dµ, (2.5)

wherei = 1, 2, 3 andî = 4, 5, 6 = 1̂, 2̂, 3̂. The indices (1, 2, 3, 8) are for the base space
S4 and (4, 5, 6, 7) are those for the fiber. This metric is a special case of more general class
of metric on the quaternionic line bundle over a quaternionic Kähler manifold. Note that
S4 = P1(H) is not a Kähler but a quaternionic Kähler manifold. In fact any four-dimensional
manifold is quaternionic Kähler. The Eguchi-Hanson metric is a four-dimensional gravi-
tational instanton on a (complex) line bundle over the complex projective spaceP1(C).



H. Kanno, Y. Yasui / Journal of Geometry and Physics 34 (2000) 302–320 305

More precisely the global topology of the Eguchi-Hanson space is the co-tangent bundle
T ∗(P1(C)) which coincides with the canonical bundle. Hence, the above metric is a higher
dimensional generalization of the Eguchi-Hanson metric obtained by simply replacing the
complex numbers with the quaternions (see also Appendix A).

It is straightforward to compute the Ricci tensor of the metric (2.1), which is found to be
diagonal:

Ricij = δij

{
3

g2

(
1 − 1

2

h2

g2

)
− 4K2 − K ′

f
− 3KL

}
,

Riĉ
iĵ

= δij

{
h2

g4
+ 1

2h2
− L′

f
− 4KL − 3L2

}
,

Ric77 = −4
K ′

f
− 4K2 − 3

f
L′ − 3L2, Ric88 = Ricii , (2.6)

where

K = g′

fg
, L = h′

fh
, (2.7)

and′ denotes the differentiation. The volume form of the manifold is given by

e1 ∧ e2 ∧ · · · ∧ e8 = fg4h3 dr ∧ d�S7, (2.8)

where d�S7 is the volume form of the sphereS7. We obtain the Einstein–Hilbert action:∫
R

√
g d8x = volS7 · (T + V ),

where

T =
∫

f −1 dr
(
12(g′)2g2h3 + 6(h′)2g4h + 24(g′h′)g3h2

)
, (2.9)

V =
∫

f dr

(
12g2h3 − 3

2
g4h − 3h5

)
. (2.10)

Note that we are going to regard the radial co-ordinater as a “time” and hence the relative
sign of the kinetic term and the potential term in the action is changed due to the Euclidean
time. With this interpretation the functionf (r) is a gauge freedom of time reparametrization.
In fact we would be able to impose a gauge fixing conditionf = 1. Hence the physical
variables areg = g(r) andh = h(r). The (sigma model) metric determined from the kinetic
termT is

Ggg = 24f −1g2h3, Ggh = Ghg = 24f −1g3h2, Ghh = 12f −1g4h. (2.11)

Now we are ready to make a crucial observation that the present model can be identified
as a bosonic part of supersymmetric quantum mechanics (0+1 dimensional SUSY sigma
model). The point is that introducing the superpotential

W = 3g4h2 + 6g2h4, (2.12)
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we can write the potential term in the form

V = 1

2
Gij ∂W

∂qi

∂W

∂qj
, (2.13)

where(q1, q2) = (g, h) andGij is the inverse of the metric. The equation of motion from
the Hamiltonian1 H = T − V of SUSY quantum mechanics

d

dr
qi = −Gij ∂W

∂qj
(2.14)

gives the following flow equations:

K = g′

fg
= −3

2

h

g2
, L = h′

fh
= − 1

2h
+ h

g2
. (2.15)

If we introduced fermionic variables that are SUSY partners to(q1, q2) = (g, h), these
equations would be equivalent to the condition that SUSY variations of the fermionic
co-ordinates vanish and hence determine a purely bosonic configuration that is invariant
under supersymmetry. We observe that (2.15) coincides with the condition of the octo-
nionic self-duality of the Riemann curvature, which shows the BPS nature of the octonionic
self-duality. Using (2.6) and (2.15), we can see that a solution to the above equation gives
a Ricci-flat metric. It is known that the same structure arises for the four-dimensional hy-
perKähler metrics that depends only on a radial co-ordinate regarded as an Euclidean time
in SUSY quantum mechanics. We note that what we have shown for theSpin(7) holonomy
is also valid for a seven-dimensional metric withG2 holonomy in [11]. It is an interesting
problem to work out a similar relation to SUSY quantum mechanics for other examples of
the metric with special holonomy.

In [12] (2.15) are derived from the self-duality on the spin connection

ωab = 1
29abcdωcd, (2.16)

where a totally anti-symmetric tensor9abcd is defined in Appendix B in terms of the
structure constants of octonions. Imposed with a gauge condition ong(r) instead off (r),
(2.15) were solved as follows:

f (r) =
(

1 −
(m

r

)10/3
)−1/2

, g(r)2 = 9
20r

2, h(r) = − 3
10rf(r)−1. (2.17)

We note thatf (r) satisfies the equation

rf′(r) = 5
3f (1 − f 2). (2.18)

In eight dimensions the spin connectionω is SO(8) valued. Let0ab be a generator ofSO(8).
The tensor9abcd obeys the identity (B.5) which implies

9abpq9cdpq = 6(δc
aδ

d
b − δd

a δc
b) − 49cd

ab . (2.19)

1 Note again the change of the relative sign in the Euclidean time.
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This identity means that if we regard9cd
ab as a linear mapD on SO(8) algebra, then the

eigenvalues of(1/2)D are 1 and−3. Since dimSO(8) = 28 andD is traceless, we get the
eigenspace decomposition:

SO(8) = E(1) ⊕ E(−3), dimE(1) = 21, (2.20)

whereE(1) coincides withSpin(7) subgroup ofSO(8) [14]. The orthogonal projection
operator to each eigenspace is

P1 = 3
4

(
1 + 1

6D
)

, P−3 = 1
4

(
1 − 1

2D
)

. (2.21)

We obtain the following generator ofSpin(7)

Gab = 3
4

(
0ab + 1

69abcd0cd
)

, (2.22)

which satisfies the constraint

Gab − 1
29abcdGcd = 0. (2.23)

The algebraSO(8) has four mutually commutingSU(2) subalgebras with the following
generators:

Si =
(
08i + 1

2εijk0
jk

)
, T i =

(
08i − 1

2εijk0
jk

)
, (2.24)

Ui =
(
07î + 1

2εijk0
ĵ k̂

)
, V i =

(
07î − 1

2εijk0
ĵ k̂

)
. (2.25)

By comparing the Dynkin diagrams ofSO(8) andSpin(7), we see thatSpin(7) is obtained by
identifying two ofSU(2) subalgebras which correspond to the outer nodes ofSO(8) diagram.
Indeed the constraint (2.23) implies an identification ofSi ≡ Ui , i.e., SU(2) in the base
direction and that along the fiber (the normal direction) are identified.2 Sinceωab0

ab =
ωab(P1 + P−3)0

ab = ωabG
ab + P−3ωab0ab, we can regard anSO(8) valued connection

with the octonionic self-dualityP−3ωab = 0 asSpin(7) valued. Thus the self-duality (2.16)
of the spin connection imposed in [12] is just the requirement thatω is Spin(7) valued. In
fact we can prove that the Cayley four-form

� = 1
4!9abcdea ∧ eb ∧ ec ∧ ed, (2.26)

is closed, if the spin connection satisfies the self-duality (2.16). The closedness of the Cayley
four-form is equivalent to the condition ofSpin(7) holonomy [16,17]. The total space of
the quaternionic line bundle onS4 with the metric given by (2.17) is a manifold ofSpin(7)

holonomy.

3. Ansatz forSpin(7)Spin(7)Spin(7) connection

Now we consider the octonionic instanton on aSpin(7) bundle over the GPP–BFK metric
(octonionic gravitational instanton), which we would like to propose as a higher dimensional

2 This is definitely related to the topological twist on the world volume of SUSY cycles [15].
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generalization ofSU(2) instanton on the Eguchi-Hanson metric (four-dimensional gravita-
tional instanton). In the four-dimensional case, the spin connection of the Eguchi-Hanson
metric satisfies the self-duality condition with respect to internalSU(2) indices and this
implies the curvature two form satisfies the self-duality on space–time indices as well as
internal ones. Thus we can obtain an example of Yang–Mills instanton by the standard em-
bedding of the spin connection into the Yang–Mills connection. The same thing takes place
for Spin(7) case in eight dimensions due to the basic identity for the structure constants
of octonions. (ForSU(2) case in the above the corresponding object isεijk; the structure
constants of the quaternions.) For the standard embedding ofSpin(7) connections, see
Appendix B.

We now try to find more generalSpin(7) instantons other than the one obtained by the
standard embedding. Motivated by the form of spin connection of GPP–BFK metric, we
take the following ansatz forSpin(7) connection:

Aij= −
(

1

g sinµ
ek + Yêk

)
εijk, A

îĵ
= −

(
(X + Y )ek̂ + cot(µ/2)

g
ek

)
εijk, (3.1)

A
iĵ

= Z
(
εijke

k + δij e
8
)

, A8i = −cotµ

g
ei − Yêi , (3.2)

A8î
= −Zei , A87 = −(3Z)e8, (3.3)

A7i = (3Z)ei, A7î
= (X − Y )eî , (3.4)

whereX(r), Y (r), Z(r) are unknown functions of the radial co-ordinater. For the spin
connection we have

X(r) = 1

2h(r)
− h(r)

2g(r)2
, Y (r) = Z(r) = h(r)

2g(r)2
. (3.5)

Since this ansatz satisfies the octonionic self-duality

Aab = 1
29abcdAcd, (3.6)

with respect to the Lie algebra indices, we can consistently regard the connectionA =
(1/4)GabAab asSpin(7) valued. We also note that the vielbein of radial directione7 does
not appear, hence if we think of the radial co-ordinate as a “time”, we are in the temporal
gauge.

Due to the identity obeyed by the component of the calibration four-form or the structure
constant of octonions, the curvatureF = dA + A ∧ A satisfies the same self-duality as the
connection and hence it is alsoSpin(7) valued (i.e., we can compute the curvature as ifA

wasSO(8) connection) We obtain the following curvature:

Fij = − 1

f

(
Y ′ + h′

h
Y

)
e7 ∧ ek̂εijk +

(
1

g2
− h

g2
Y − 10Z2

)
ei ∧ ej

+
(

1

h
Y − 2Y 2

)
eî ∧ eĵ +

(
− h

g2
Y + 2Z2

)
e8 ∧ ekεijk, (3.7)
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F
îĵ

= − 1

f

(
X′ + Y ′ + h′

h
(X + Y )

)
e7 ∧ ek̂εijk

+
(

1

g2
− h

g2
(X + Y ) − 2Z2

)
ei ∧ ej +

(
1

h
(X + Y ) − 2X2 − 2Y 2

)
eî ∧ eĵ

+
(

1

g2
− h

g2
(X + Y ) − 2Z2

)
e8 ∧ ekεijk, (3.8)

F
iî

= 1

f

(
Z′ + g′

g
Z

)
e7 ∧ e8 + Z(4Y − 3X)ei ∧ eî + XZ

∑
k 6=i

ek ∧ ek̂, (3.9)

F
iĵ

= 1

f

(
Z′ + g′

g
Z

)
e7 ∧ ekεijk + Z(4Y − 3X)ei ∧ eĵ

−XZej ∧ eî − XZe8 ∧ ek̂εijk (i 6= j) (3.10)

F8i = − 1

f

(
Y ′ + h′

h
Y

)
e7 ∧ eî +

(
1

g2
− h

g2
Y − 10Z2

)
e8 ∧ ei

+
(

− h

2g2
Y + Z2

)
εijk ej ∧ ek +

(
1

2h
Y − Y 2

)
εijk eĵ ∧ ek̂, (3.11)

F8î
= − 1

f

(
Z′ + g′

g
Z

)
e7 ∧ ei + Z(4Y − 3X)e8 ∧ eî − XZεijk ej ∧ ek̂, (3.12)

F87 = − 3

f

(
Z′ + g′

g
Z

)
e7 ∧ e8 + Z(X − 4Y )

∑
k

ek ∧ ek̂, (3.13)

F7i= 3

f

(
Z′+g′

g
Z

)
e7 ∧ ei + Z(4Y − X)εijk ej ∧ ek̂ − Z(4Y − X)e8 ∧ eî , (3.14)

F7î
= 1

f

(
X′ − Y ′ + h′

h
(X − Y )

)
e7 ∧ eî +

(
h

2g2
(X − Y ) − 3Z2

)
εijk ej ∧ ek

+
(

− 1

2h
(X − Y ) + X2 − Y 2

)
εijk eĵ ∧ ek̂ +

(
h

g2
(X − Y ) − 6Z2

)
e8 ∧ ei .

(3.15)

In the case of the Riemannian curvature which comes from the metric the symmetry
of four indices implies that the octonionic self-duality as a space–time two form follows
from that ofSO(8) indices. However, for the Yang–Mills curvature the octonionic instanton
equation [9,18,19]:

∗ F = � ∧ F, (3.16)

is independent of the self-duality ofF with respect to the Lie algebra indices which only
implies that it isSpin(7) valued. Thanks to the cyclic symmetry ofSU(2) indices in our
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ansatz, the octonionic self-duality of the curvature two-form is greatly reduced. We find the
following three independent conditions:

1

f
X′ + L · X + 2X2 −

(
1

h
+ 2h

g2

)
X + 1

g2
+ 4Z2 = 0,

1

f
Y ′ + L · Y + 2Y 2 −

(
1

h
+ 2h

g2

)
Y + 1

g2
− 8Z2 = 0,

1

f
Z′ + K · Z + (X − 4Y )Z = 0. (3.17)

4. Reduced solutions

Using the explicit form of the functionsg andh in (2.17) and making the following change
of variables which is convenient for this special background of gravitational instanton

X = 1

rf

(
ξX − 5

3
f 2

)
, (4.1)

Y = 1

rf

(
ξY − 5

3
f 2

)
, (4.2)

Z = 1

rf
ξZ, (4.3)

we obtain the following system of first order ordinary differential equations:

r
d

dr
ξX + 2ξX(ξX − 1) + 4ξ2

Z = 0, (4.4)

r
d

dr
ξY + 2ξY (ξY − 1) − 8ξ2

Z = 0, (4.5)

r
d

dr
ξZ + (ξX − 4ξY + 5)ξZ + 20

3
(f 2 − 1)ξZ = 0. (4.6)

Before considering solutions to the differential equations (4.4)–(4.6), let us first look at the
asymptotic behavior at infinity. In the region of the large radial co-ordinater neglecting
the last term in (4.6) (or puttingf = 1), we obtain gradient flow equations onR3 = {ξ =
(ξX, ξY , ξZ)} with a metricηAB = diag((1/2), 1, 4):

d

dt
ξA = −ηAB ∂U(ξ)

∂ξB
, (4.7)

wheret = ln r and the potential functionU is given by

U = 1
3ξ3

X − 1
2ξ2

X + 2
3ξ3

Y − ξ2
Y + 2ξ2

Z(ξX − 4ξY + 5). (4.8)

By counting the number of negative eigenvalues of the Hessian
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Table 1
Critical points of the potential functionU and their Morse indices

Critical point Critical values Index

P1 (1,1,0) 0
P2 (1,0,0) 1
P3 (0,1,0) 1
P4 (0,0,0) 2
P ±

5 (1/3, 4/3, ±1/3) 2

P ±
6

(
5/11, 15/11, ±√

15/11
)

1

HAB = ∂2U

∂ξA∂ξB

=

 2ξX − 1 0 4ξZ

0 4ξY − 2 −16ξZ

4ξZ −16ξZ 4(ξX − 4ξY + 5)


 , (4.9)

at the critical points ofU , we find the list of the critical points and the Morse indices (see
Table 1). We can use one of these critical points as a boundary condition of the octonionic
Yang–Mills instantons and classify the solutions of (4.4)–(4.6) according to

Sol(Pi) := {a family of solutions approaching toPi for r → ∞}. (4.10)

If ξZ = 0, we can neglect the last term of (4.6) in the whole region and we can find a
general solution:

ξX = 1

1 − (a/r2)
, ξY = 1

1 − (b/r2)
, (4.11)

which belongs to the classSol(P1) for finite parameters(a, b). When we take the limits of
parameters(a, ∞), (∞, b) and(∞, ∞), the limiting solutions belong toSol(P2), Sol(P3)

andSol(P4), respectively. WhenξZ 6= 0 it is difficult to find general solutions, which will
be discussed in more detail in Section 5, but we here present a special solution inSol(P −

5 )

corresponding to the spin connection

ξX = 1
3, ξY = −1

3 + 5
3f 2, ξZ = −1

3. (4.12)

Note that provided a solution(ξX, ξY , ξZ) ∈ Sol(P +
5,6) there always exists a solution

(ξX, ξY , −ξZ) ∈ Sol(P −
5,6) by the symmetry of equations.

The spin connection (4.12) yields aSpin(7) connection, while as we will see shortly the
connection of (4.11) takes the value in a sub-Lie algebra ofSpin(7). In this sense (4.11) is a
reduced solution. Let us calculate the curvature two-formF = (1/4)GabFab by substituting
(4.1) and (4.2) andZ = 0 into (3.7)–(3.15). Defining the sub-generators ofGab by

Si = 1
4

(
−G7î + 1

2εijkG
ĵ k̂

)
, (4.13)

T i = 1
2

(
G8i + 1

2εijkG
jk

)
= 1

2

(
G7î + 1

2εijkG
ĵ k̂

)
, (4.14)

Ui = 1
4

(
−G8i + 1

2εijkG
jk

)
, (4.15)
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we can rewrite the curvature into the following form:

F = SiFi(ξX) + T iFi(ξY ) + UiCi, (4.16)

where the two-formsFi(ξA) (A = X, Y ) andCi are given by

Fi(ξA) = fA

(
e8 ∧ ei + 1

2
εijke

j ∧ ek

)
+ gA

2
εijke

ĵ ∧ ek̂ + hAe7 ∧ eî , (4.17)

with

fA = 4ξA

3r2f 2
, gA = − 4ξA

r2f 2

(
ξA − 5

3
f 2

)
,

hA = 4ξA

r2f 2

(
ξA + 2

3
− 5

3
f 2

)
, (4.18)

and

Ci = 20

9r2

(
−e8 ∧ ei + 1

2
εijke

j ∧ ek

)
. (4.19)

It is easy to see thatSi , T i andUi are mutually commutingSU(2) generators which satisfy
the relations

[Si, Sj ] = −εijk Sk, [T i, T j ] = −εijk T k, [Ui, Uj ] = −εijk Uk. (4.20)

Thus the solution (4.11) describes theSU(2)3 octonionic Yang–Mills instanton. When the
parameters(a, b) take the special values, some curvature components vanish:

Fi(ξY ) = 0 for (a, ∞), (4.21)

Fi(ξX) = 0 for (∞, b), (4.22)

Fi(ξX) = Fi(ξY ) = 0 for (∞, ∞). (4.23)

The gauge group is then further reduced toSU(2)2 andSU(2) in the case of (4.21) or (4.22)
and (4.23), respectively.

We now evaluate the Chern forms characterizing the topological nature of the solution
(4.11). The relevant closed forms are given by

c2 = 1

8π2
Tr F ∧ F, (4.24)

c4 = 1

128π4 ((Tr F ∧ F)(Tr F ∧ F) − 2TrF ∧ F ∧ F ∧ F) , (4.25)

where Tr refers to the adjoint representation ofSU(2)3. Sincec2 is a four-form, it must be
integrated over a four-dimensional hypersurface in the quaternionic line bundle. A natural
choice is the fiberR4, which is specified by the orthonormal frame{e4, e5, e6, e7}. Using
(4.11),(4.17) and (4.19), we obtain the formula

∫
c2 =

(
3

10

)3 3!

π2
volSU(2)

∑
A=X,Y

IA, (4.26)
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where

IA = −1

4

∫ ∞

m

dr r3f −2gAhA = 1

3

∫ ∞

m

dr
d

dr

(
5ξ2

Af −4 − 2ξ3
Af −6

)
(4.27)

in the parameter regiona, b < m2. Sincef −1 = 0 at r = m andξX = ξY = f = 1 for
r → ∞, we haveIX = IY = 1. Forc4 the integration is to be evaluated over the total space
of the quaternionic line bundle. A similar calculation yields

∫
c4 =

(
3

10

)5 4

π4
volS7


25

∑
A=X,Y

IA − IXY


 , (4.28)

where

IXY = −
(

3

4

)3 ∑
A6=B

∫ ∞

m

dr r7f −2
(
3f 2

AgBhB + 2fAfBgAgB

)

=
∫ ∞

m

dr
d

dr

(
25f −8ξ2

Xξ2
Y − 6f −10ξ2

Xξ2
Y (ξX + ξY )

)
, (4.29)

andIXY = 13 fora, b < m2.

5. Asymptotic expansion

As we have mentioned it is difficult to obtain a solution withξZ 6= 0 in a closed form.
The only exceptional solution is given by the spin connection regarded as aSpin(7) gauge
field. To investigate the existence of more general solutions let us look for a solution in a
form of formal power series. We first consider the exponent of the power series determined
by the gradient flow equation. Linearizing (4.7) around the critical pointPi , we have

d

dt
ξ̃A = −H̃ABξ̃B, (5.1)

whereH̃AB represents the 3×3 matrixηACHCB evaluated atPi . To be specific, letλ1, λ2, . . .

be the positive eigenvalues of̃H andξA(Pi) the critical values. Then, the gradient flow
approaching toPi may be expanded in the form

ξA = ξA(Pi) + aA
1

(a

r

)λ1 + aA
2

(
b

r

)λ2

+ · · · (5.2)

for a large radial co-ordinate. Here coefficientsaA
1 , aA

2 , . . . are determined by the linearized
gradient flow equation (5.1) anda, b, . . . are 3− index(Pi) free parameters. Recall that
the gradient flow gives an approximate solution, and hence the expansion (5.2) must be
corrected by the exact octonionic Yang–Mills equation. The correction comes from the last
term(f 2 − 1)ξZ in (4.6), which is also expanded by using

f 2 =
∞∑

n=0

(m

r

)(10n)/3
. (5.3)
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Now we make an ansatz of the formal power series which takes into account the asymptotic
behavior described above:

ξA ≈ ξA(Pi) +
∞∑

k=0

∞∑
n1=0

∞∑
n2=0

· · · (wkz
n1
1 z

n2
2 · · · ) aA

kn1n2···, k + n1 + n2 + · · · 6= 0,

(5.4)

wherew = (m/r)10/3, z1 = (a/r)λ1, z2 = (b/r)λ2, . . . . This series will provide the
asymptotic expansion of the octonionic Yang–Mills instanton inSol(Pi) with totally 4−
index(Pi) moduli parameters, if the parameterm of the background metric is treated
as a moduli. In the following we illustrate this asymptotic expansion by concentrating
on the casesSol(P −

5 ) and Sol(P1). Other cases can be analyzed in the same
manner.

(a)Sol(P −
5 ). The matrixH̃ has one positive eigenvalueλ = (1/3)(7+ √

57), so that the
solution is written as the double power series:

ξA ≈ ξA(P −
5 ) +

∞∑
n=0

∞∑
k=0

wnzkaA
nk, n + k 6= 0, (5.5)

wherew = (m/r)10/3, z = (a/r)λ and we have one free (moduli) parametera in addition
to the background metric modulim. When we takeaX

01 = aY
01 = aZ

01 = 0 as an initial
condition of the recursion relation, we find a solution

aY
n0 = 5

3 (∀n ≥ 1), others= 0, (5.6)

which recovers the spin connection (4.12). More general solution with the additional moduli
parametera is obtained by using the series

ξX ≈ 1

3
+

∞∑
n=0

∞∑
k=1

wnzkank, (5.7)

ξY ≈ −1

3
+ 5

3
f 2 +

∞∑
n=0

∞∑
k=1

wnzkbnk, (5.8)

ξZ ≈ −1

3
+

∞∑
n=0

∞∑
k=1

wnzkcnk, (5.9)

where the first coefficients area01 = −(1/3)(9−√
57),b01 = (1/3)(3+√

57) andc01 = 1.
The higher coefficients are uniquely determined by the recursion formulae:

(
10

3
n + λk + 2

3

)
ank + 8

3
cnk − 2

n∑
p=0

k−1∑
q=1

(
apqan−p,k−q + 2cpqcn−p,k−q

) = 0,

(5.10)
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(
10

3
n + λk − 10

3

)
bnk − 16

3
cnk − 20

3

n−1∑
p=0

bpk

− 2
n∑

p=0

k−1∑
q=1

(
bpqbn−p,k−q − 4cpqcn−p,k−q

) = 0, (5.11)

1

3
ank − 4

3
bnk +

(
10

3
n + λk

)
cnk −

n∑
p=0

k−1∑
q=1

cpq

(
an−p,k−q − 4bn−p,k−q

) = 0.

(5.12)

We leave the issue of convergence of this formal solution for future research. This is im-
portant for a global structure of the moduli space such as a compactification.

(b) Sol(P1). The matrixH̃ has degenerated eigenvalues, i.e.,λ1 = λ2 = λ3 = 2.
In order to unambiguously determine the coefficientsaA

kn1n2n3
of power series, we first

perturb the octonionic Yang–Mills equation so that the correspondingH̃ has non-degenerate
eigenvalues and after all calculations we take off the perturbation. If we use the metric
ηAB = diag((1/2)(1 − ε1), 1 − ε2, 4) with small parametersε1 andε2 instead ofηAB =
diag(1/2, 1, 4), then the positive eigenvalues ofH̃ areλ1 = 2(1+ε1), λ2 = 2(1+ε2), λ3 =
2. Eqs. (4.4) and (4.5) are replaced by

r
d

dr
ξX + λ1ξX(ξX − 1) + 2λ1ξ

2
Z = 0, (5.13)

r
d

dr
ξY + λ2ξY (ξY − 1) − 4λ2ξ

2
Z = 0, (5.14)

while (4.6) for the Z-component remains unchanged. After taking the limitεi → 0 (i =
1, 2), the solution in a form of power series is given by (5.4) withw = (m/r)10/3, z1 =
(a/r)2, z2 = (b/r)2 andz3 = (c/r)2. The explicit lower terms are as follows:

ξX ≈ 1

1 − z1
+

∞∑
n=1

zn
3an + · · · , (5.15)

ξY ≈ 1

1 − z2
+

∞∑
n=1

zn
3bn + · · · , (5.16)

ξZ ≈
∞∑

n=1

zn
3cn + · · · , (5.17)

where the coefficients are determined by the recursion formulae

an = 1

n − 1

n−1∑
k=1

(akan−k + 2ckcn−k), (5.18)
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bn = 1

n − 1

n−1∑
k=1

(akan−k − 4ckcn−k), (5.19)

cn = 1

2(n − 1)

n−1∑
k=1

ck(an−k − 4bn−k), (5.20)

with the first termsa1 = b1 = 0 andc1 = 1. If we imposec = 0, the above expansion
reproduces the exact solution (4.11).

6. Discussion

Firstly we remark the relationship between the asymptotic flow (4.7) and the Chern–
Simons theory over the squashed seven sphereŜ7. A similar relation in various dimensions
has been discussed in [20]. The gravitational instanton metric (2.1) has the conformally
product form in a large radial co-ordinate region,

ds2 → dr2 + 9

20
r2 ds2

Ŝ7, (6.1)

where ds2
Ŝ7 is theSp(2) · Sp(1)-invariant metric onŜ7:

ds2
Ŝ7 = dµ2 + 1

4 sin2µ · 62
i + 1

5(σi − Ai)
2. (6.2)

Now (4.7) may be regarded as the gradient flow of the Chern–Simons theory onŜ7 as
follows. Let us define the action by

CS[A] =
∫

Ŝ7
9̂ ∧ Tr

(
A ∧ dA + 2

3A ∧ A ∧ A
)

, (6.3)

whereA stands forSpin(7) connection and9̂ a closed four-form on̂S7 induced by the
calibration four-form on the total space withSpin(7) holonomy. It is explicitly written as

9̂ = θ1 ∧ θ2 ∧ θ3 ∧ θ8 − θ1 ∧ θ 2̂ ∧ θ 3̂ ∧ θ8 + θ2 ∧ θ 1̂ ∧ θ 3̂ ∧ θ8

−θ3 ∧ θ 1̂ ∧ θ 2̂ ∧ θ8 + θ1 ∧ θ2 ∧ θ 1̂ ∧ θ 2̂

+θ2 ∧ θ3 ∧ θ 2̂ ∧ θ 3̂ + θ1 ∧ θ3 ∧ θ 1̂ ∧ θ 3̂, (6.4)

using the orthonormal frame of the metric (6.2)

θi = 1
2 sinµ · 6i, θ î = 1√

5
(σi − Ai), θ8 = dµ. (6.5)

The gradient flow of the functional (6.3) obeys a differential equation

d

dt
A = − ∗ (9̂ ∧ F), (6.6)

which reproduces the flow (4.7) if we use the ansatz (3.1)–(3.4) and (4.1)–(4.3) withf = 1.
The critical points ofCS[A], i.e., the solutions of9̂ ∧ F = 0, then reduce to those of
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the potential functionU , which does not mean flat-connections as in the three-dimensional
Chern–Simons theory.

The energy–momentum tensor of the Yang–Mills field is

T YM
µν = Tr

(
FµλF

λ
ν

) − 1
4gµνTr

(
FλκFλκ

)
. (6.7)

For the octonionic instantons the energy–momentum tensorTµν does not vanish in general
and this presents a sharp contrast with the case of four-dimensional instantons. We can prove
that (anti-) self-duality of the curvature impliesT YM = 0 using a property of the totally
anti-symmetric tensorεµνρσ in four dimensions. Hence a four-dimensional instanton does
not disturb the Ricci flatness of the background metric. However the octonionic self-duality
is not sufficient for leading a vanishing energy–momentum tensor and this causes an issue
of the back reaction of matter to gravity. Non-vanishing total energy–momentum tensor
is inconsistent with the Ricci flatness of the space–time. Actually a similar issue is en-
countered, if we embed a four-dimensional instanton in higher dimensions. (Note that this
gives a special case of higher dimensional instanton.) In such a case, though the tangent
components ofTµν along the four-dimensional submanifold on which the instanton lives
vanish as we argued above, the instanton produces a non-vanishing contribution to the
(d −4)-dimensional normal components of the energy–momentum tensor. One of the ways
to resolve this problem is to embed the solution to a consistent background of superstrings.
Based on a four-dimensional instanton, one can construct several five brane solutions which
has a dilatonφ and an anti-symmetric tensor fieldH = dB in addition to the Yang–Mills
field A [21–24]. In these solutions we can think of four-dimensional instanton as a source
of configuration in the transverse space. Due to a coupling

dH = Tr(R ∧ R − F ∧ F), (6.8)

there are contributions fromφ and B which balances the total energy–momentum ten-
sor. This should be so, since this provides a consistent background for superstrings. From
this example we believe our solutions should be promoted to a consistent background of
supermembrane or eleven-dimensional super gravity [12,25,26].
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Appendix A. Quaternionic Kähler manifold

The holonomy group of a connected and orientable 4n dimensional Riemannian manifold
is a subgroup ofSO(4n). If the holonomy group is reduced toSp(n) · Sp(1) ∼= Sp(n) ×
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(Sp(1)/Z2), the manifold is called quaternionic Kähler [17]. (Caution: a quaternionic Kähler
manifold is not necessarily Kähler!) The quaternionic Kähler manifold is known as a target
space geometry ofN = 2 supergravity in four dimensions. (If we considerN = 2 global
SUSY, thenSp(1) part is trivial and the manifold is hyperKähler.) It also provides a natural
arena for a higher dimensional generalization of instanton equation. Note that whenn =
1 the holonomy of quaternionic Kähler manifold isSp(1) × (Sp(1)/Z2) and hence any
four-dimensional orientable manifold is quaternionic Kähler. This may be compared with
the fact any two-dimensional orientable manifold is Kähler due toSO(2) ∼= U(1).

On the frame bundle of a quaternionic Kähler manifold the gauge transformation among
local co-ordinate patches is inSp(n) · Sp(1). We can define a quaternionic line bundle as
an associated bundle to the frame bundle as follows. Each fiber of quaternionic line bundle
is the space of quaternionsH, i.e.,R4 as a vector space. On quaternions there is a natural
action ofSp(1) ∼= SU(2). Thus we can define the gauge transformation of the fiber using
theSp(1) part of the holonomy group. That is,Sp(n) part acts trivially on the quaternionic
line bundle. This especially implies that quaternionic line bundle on hyperKähler manifold
is trivial. It might be helpful to note that this construction is a quaternionic analogue of
complex line bundle (or the canonicalU(1) bundle) on a Kähler manifold that hasU(n)

holonomy.
If we take a four-dimensional spin manifoldM, each factor ofSp(1) is identified as

Spin(3) that defines the spinor bundleS±(M). Hence, the complexified spinor bundle on
four-dimensional manifold is regarded as a quaternionic line bundle. It is known that the
total space of spinor bundle on a four-dimensional manifold possesses a naturalSpin(7)

structure.

Appendix B. Standard embedding ofSpin(7)Spin(7)Spin(7) connection

We show that the octonionic self-duality of the spin connectionω with respect to the
(local frame) Lie algebra indices implies the octonionic self-duality of the curvatureR =
dω + ω ∧ ω with respect to the space time form indices. Letωab = −ωba be the spin
connection one-form. In eight dimensionsω is SO(8) valued in general. (We take the
Euclidean signature in the following.) But if we impose the octonionic self-duality

ωab = 1
29abcdωcd, (B.1)

the spin connectionω can be regarded asSpin(7) valued. The totally anti-symmetric tensor
9abcd is related to the structure constantsCabc of the octonion algebra as follows [27]:

9abc8 = Cabc, 9abcd = 1

3!
εabcdpqrC

pqr , (B.2)

where the duality is taken in seven dimensions. In terms of a local frame (vielbein)ea
µ we

can define a space–time self-dual four-form

� = 1

4!
9abcdea ∧ eb ∧ ec ∧ ed . (B.3)
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On an eight-dimensional manifold ofSpin(7) holonomy, the four-form9 is closed:

d� = 0, (B.4)

A crutial point is the following identity which follows from the property of the octonionic
structure constantsCabc [14,27],

9abcd9fghd =
(
δ
f
a δ

g
b − δ

f
b δ

g
a

)
δh
c + ((fgh) : cyclic)

−
(
(9

fg
ab δh

c + 9
fg
bc δh

a + 9
fg
ca δh

b ) + ((fgh) : cyclic)
)

. (B.5)

Due to the symmetry of the Riemann curvature tensor the self-duality of form indices
follows form that of Lie algebra indices. Thus it is enough to show that

Rab = 1
29abcdRcd, (B.6)

where we have suppressed the two-form indices. In the defining relation

Rab = dωab + ωac ∧ ωcb, (B.7)

the self-duality of the second term is non-trivial. Using the identity (B.5), we can show the
second term is indeed self-dual. Thus the curvature two form constructed from aSpin(7)

valued spin connectionω satisfies the octonionic instanton equation.
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