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Abstract

The total space of the spinor bundle on the four-dimensional spifei® a quaternionic line
bundle that admits a metric &pin(7) holonomy. We consider octonionic Yang—Mills instanton on
this eight-dimensional gravitational instanton. This is a higher dimensional generalization of (anti-)
self-dual instanton on the Eguchi-Hanson space. We propose an ans&irfdh) Yang—Mills
field and derive a system of non-linear ordinary differential equations. The solutions are classified
according to the asymptotic behavior at infinity. We give a complete solution when the gauge group
is reduced to a product @U(2) subalgebras ispin(7). The existence of more genepin(7)
valued solutions can be seen by making an asymptotic expansion. © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Instantons and soliton solutions have played a prominent role in our understanding of
non-perturbative dynamics and dualities in gauge field theories and string theory. It has
been observed that fundamental examples of topological solutions are associated with the
four Hopf fibrations of spheres, which in turn are related to the division algebras of real
numbersR, complex numberg, quaternion$d and octonion® [1-3]. The kink solution
in 1+ 1 dimensions, the Dirac monopole in three dimensions an&u(2) Yang—Mills
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instanton in four dimensions correspond to the first three algebras. In this paper we will
bring into focus eight-dimensional instantons that corresponds to the octonions.

If the theory is promoted to a supersymmetric (SUSY) theory, these topological solutions
obtain a new feature. Thatis, they are characterized as BPS states that preserve a fraction of
SUSY. Roughly speaking a first order soliton equation is a “square root” of the equation of
motion for bosons and hence appears in the SUSY transformations of fermions. Solutions
that make the SUSY variation of fermions vanishing give purely bosonic configurations
which preserve (or break) some portions of supersymmetry. It is interesting that there is
also a relation between the four division algebras and the existence of supersymmetric
pure Yang—Mills theory and superstring theorwin= 3, 4, 6, 10 [4,5]. Thus we see there
are amusing links among instanton, supersymmetry and the division algebra. From this
viewpoint octonionic instanton that will be featured in the following is related to SUSY
Yang—Mills and superstring theory in 10 dimensions.

Topological quantum field theories enter naturally in these connections. Especially, topo-
logical Yang—Mills theories in two and four dimensions are associated with the complex
numbers and the quaternions, respectively. Furthermore, one can construct an eight- dimen-
sional cohomological Yang—Mills theory based the octonionic instanton equation [6-8],
though it makes sense only on a manifold of restricted holonomy. It is promising that this
BRST cohomological theory probes the moduli space of the octonionic instanton equation.
But how this is achieved actually depends on our finding an appropriate compactification of
the moduli space. In the case of four-dimensional instantons we need the point-like (ideal)
instantons to compactify the moduli space. In [9] it has been argued that a natural higher
dimensional analogue of ideal (point-like) instanton is that lives on the normal bundle over
a supersymmetric cycle (or a calibrated submanifold) that has codimension four. This ar-
gument gives a good motivation for looking at higher dimensional instanton oRthe
bundle.

Fortunately an eight-dimensional metric that is prepared for this purpose has been pro-
vided in [10-12]. It is a metric 0Bpir(7) holonomy on th&k* bundle overs?, which is an
example of a quaternionic line bundle over a quaternionic Kahler manifold. In this paper
we consider the octonionic Yang—Mills instanton on t8@n(7) holonomy manifold. As
will be shown in Section 2 this metric is a natural eight-dimensional generalization of the
Eguchi-Hanson metric. The geometry of quaternions replaces the role of complex numbers
in the Eguchi-Hanson space whose global structure is the canonical line bundle over the
complex projective spac®;(C) = S2. Thus we can say that our instanton is a higher
dimensional generalization of (anti-)self-dual instanton on the ALE space. It is known that
the spinor bundle over a four-dimensional spin manifold $pis(7) holonomy in general.

The quaterninonic line bundle in this paper is identified with the spinor bundlesé\see
Appendix A).

The paper is organized as follows; in Section 2 we introduce the metric of Gibbons—Page—
Pope and set up notations that are necessary in the following sections. The nigjiig Of
holonomy is a solution to the octonionic self-duality for spin connections. We show that
the same condition is obtained as a flow equation in a SUSY quantum mechanics of weight
functions appearing in our ansatz of the metric. In a course of explaining the implication of
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the octonionic self-duality, some algebraic propertieSpii(7) as a subalgebra &Q(8)

are reviewed briefly. We propose our ansatzSpir(7) Yang—Mills field in Section 3, and

write down the octonionic Yang—Mills instanton equation. To solve the instanton equation
we first make a classification of solutions according to the asymptotic behavior at infinity
and find six classes. There are reduced solutions in the sense that the actual gauge group is
reducedto a direct product 8£)2) factors inSpin(7). For these class of solutions we present
almost complete answer in Section 4. Unfortunately for other solutions we are not able to
find solutions in analytically closed form. In Section 5 we perform asymptotic expansion to
see the existence of general solutions. The final section is devoted to discussion. We point
out the relation to seven-dimensional Chern—Simons theory. We also make a remark on the
energy—momentum tensor of higher dimensional Yang—Mills instantons.

2. Gravitational instanton in eight dimensions

We first derive a metric o65pin7) holonomy from the viewpoint of supersymmetric
guantum mechanics. This metric was originally obtained by Gibbons—Page—Pope [10,11]
and further discussed in [12]. (See also [13] for more intrinsic definition of the metric.) We
take the following ansatz for a metric on tRé bundle overs*:

ds? = f2dr? + g2ds? + h%(o; — A2, (2.1)
where
ds? = du? + 1 sinfp - 2 (2.2)

is the standard metric on the base spstéVe assume that, g andh are functions of the
radial co-ordinate. &; ando; are left-invariant one-form ddlU(2) manifold:

daz; = _%Eijkzj A 2k, do; = —%eijkaj N Of. (23)

Note thatSU(2) = Sp(1) is the space of quaternions with unit norm. Finallyrepresents
the basicSU(2) instanton ors*:

A,‘ = COSZ% . Ei. (24)
The vielbein (orthonormal frame) of the above metric is

d=3grsinu-Ti,  d=h()oi —A). el =f(r)dn
B =g(r)du, (2.5)

wherei = 1,2,3andi = 4,5,6 = 1, 2, 3. The indices (1, 2, 3, 8) are for the base space
$*and (4, 5, 6, 7) are those for the fiber. This metric is a special case of more general class
of metric on the quaternionic line bundle over a quaternionic Kéhler manifold. Note that
§% = P1(H) is notaKéhler but a quaternionic K&hler manifold. In fact any four-dimensional
manifold is quaternionic Kéahler. The Eguchi-Hanson metric is a four-dimensional gravi-
tational instanton on a (complex) line bundle over the complex projective spac®.
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More precisely the global topology of the Eguchi-Hanson space is the co-tangent bundle
T*(P1(C)) which coincides with the canonical bundle. Hence, the above metric is a higher
dimensional generalization of the Eguchi-Hanson metric obtained by simply replacing the
complex numbers with the quaternions (see also Appendix A).

Itis straightforward to compute the Ricci tensor of the metric (2.1), which is found to be
diagonal:

. 3 1h? K’
R|qj=5,-,-{—2(1 = )—4K2—7—3KL},
g

s
: 1 L )
. K’ > 3, 2 . :
Ric;7=—-4— —4K“— —L"—3L", Ricss = RiG;, (2.6)
f f
where
g/ h/
== L=— 2.7
fg’ fh’ 2.7)
and’ denotes the differentiation. The volume form of the manifold is given by
A A A= fethldr AdQgr, (2.8)

where d2 is the volume form of the sphet®. We obtain the Einstein—Hilbert action:

/Rﬁdgx =volg7 - (T + V),

where
T = / Fldr (12(g/)2g2h3 +6(h)2g%h + 24(g/h/)g3h2) , 2.9)
213 3 4 5
V:/fdr(lZgh —Egh—?)h). (2.10)

Note that we are going to regard the radial co-ordimads a “time” and hence the relative
sign of the kinetic term and the potential term in the action is changed due to the Euclidean
time. With this interpretation the functiof(r) is a gauge freedom of time reparametrization.

In fact we would be able to impose a gauge fixing conditfoe= 1. Hence the physical
variables arg = g(r) andh = h(r). The (sigma model) metric determined from the kinetic
termT is

Ggo = 24f 1g%h3, Gon = Gpg = 241 1g%h2, Gun = 12f Lg%, (2.11)

Now we are ready to make a crucial observation that the present model can be identified
as a bosonic part of supersymmetric quantum mechanie$ dmensional SUSY sigma
model). The point is that introducing the superpotential

W = 3g*h® + 6g°h*, (2.12)
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we can write the potential term in the form

V = }GUE)_W oW

26" 50 97" (2.13)

where(¢l, ¢%) = (g, h) andG¥ is the inverse of the metric. The equation of motion from
the Hamiltoniad H = T — V of SUSY quantum mechanics

d ; G OW
—q' = -G’ — 2.14
d}’q 8q./ ( )
gives the following flow equations:
g 3h n 1 h
= — = ———’ =—_——=a ——- - . 2.15
fg 2g2 fh 2h + g2 ( )

If we introduced fermionic variables that are SUSY partnergtog?) = (g, h), these
equations would be equivalent to the condition that SUSY variations of the fermionic
co-ordinates vanish and hence determine a purely bosonic configuration that is invariant
under supersymmetry. We observe that (2.15) coincides with the condition of the octo-
nionic self-duality of the Riemann curvature, which shows the BPS nature of the octonionic
self-duality. Using (2.6) and (2.15), we can see that a solution to the above equation gives
a Ricci-flat metric. It is known that the same structure arises for the four-dimensional hy-
perKahler metrics that depends only on a radial co-ordinate regarded as an Euclidean time
in SUSY quantum mechanics. We note that what we have shown f@pin€’) holonomy
is also valid for a seven-dimensional metric with holonomy in [11]. It is an interesting
problem to work out a similar relation to SUSY quantum mechanics for other examples of
the metric with special holonomy.

In [12] (2.15) are derived from the self-duality on the spin connection

Wap = %\Ijabca’ww{v (216)

where a totally anti-symmetric tensdr,,.,; is defined in Appendix B in terms of the
structure constants of octonions. Imposed with a gauge conditigiironnstead off (r),
(2.15) were solved as follows:

10/3\ ~1/2
fir) = (1— (5) ) L gmP=gpt k) =gyt Th (217)
We note thatf (r) satisfies the equation

if'(r) = 3£ (L— f?). (2.18)

In eight dimensions the spin connectioiis SQO8) valued. Let",;, be a generator (Q8).
The tenson,,;,.; obeys the identity (B.5) which implies

Wppg WEIPT = 6(5588 — 895¢) — 4wed (2.19)

1 Note again the change of the relative sign in the Euclidean time.
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This identity means that if we regarﬂg,‘j as a linear map on SQ8) algebra, then the
eigenvalues of1/2) D are 1 and-3. Since din5Q(8) = 28 andD is traceless, we get the
eigenspace decomposition:

SQ8) = EQ) & E(—3), dmE(1) =21, (2.20)
where E (1) coincides withSpin(7) subgroup ofSQ8) [14]. The orthogonal projection
operator to each eigenspace is

P=3(1+4p). Pa=%(1-1D). (2.21)
We obtain the following generator &pin(7)

Gap = % (Fab + %“pabcdrwd) > (222)
which satisfies the constraint

Gap — %qjahchCd =0. (2-23)
The algebraSQ(8) has four mutually commutin®U(2) subalgebras with the following
generators:

§'= (1% + Jeur®), 1= (18— deurit), (2.24)

Ul = (7 4 Jer ). vi= (07 - depurit). (2.25)

By comparing the Dynkin diagrams 8f(8) andSpin(7), we see thabpin(7) is obtained by
identifying two ofSU(2) subalgebras which correspond to the outer nod8&®) diagram.
Indeed the constraint (2.23) implies an identificationSbf= U’, i.e., SU2) in the base
direction and that along the fiber (the normal direction) are identfigincew,, '’ =
wab(PL+ P_3)T = w,,G™ + P_zwa,T a1, We can regard aBQ(8) valued connection
with the octonionic self-duality’_sw,, = 0 asSpin(7) valued. Thus the self-duality (2.16)
of the spin connection imposed in [12] is just the requirementdhiatSpin(7) valued. In
fact we can prove that the Cayley four-form

b

Q= %\Pabcde“ NN (2.26)

is closed, if the spin connection satisfies the self-duality (2.16). The closedness of the Cayley
four-form is equivalent to the condition &pin(7) holonomy [16,17]. The total space of

the quaternionic line bundle osf with the metric given by (2.17) is a manifold 8pin7)
holonomy.

3. Ansatz for Spin(7) connection

Now we consider the octonionic instanton o8@n7) bundle over the GPP—BFK metric
(octonionic gravitational instanton), which we would like to propose as a higher dimensional

2 This is definitely related to the topological twist on the world volume of SUSY cycles [15].
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generalization o8U(2) instanton on the Eguchi-Hanson metric (four-dimensional gravita-
tional instanton). In the four-dimensional case, the spin connection of the Eguchi-Hanson
metric satisfies the self-duality condition with respect to inte8Id{2) indices and this
implies the curvature two form satisfies the self-duality on space—time indices as well as
internal ones. Thus we can obtain an example of Yang—Mills instanton by the standard em-
bedding of the spin connection into the Yang—Mills connection. The same thing takes place
for Spin(7) case in eight dimensions due to the basic identity for the structure constants
of octonions. (FoiISU(2) case in the above the corresponding objeetis the structure
constants of the quaternions.) For the standard embeddiigpiof7) connections, see
Appendix B.

We now try to find more gener&pin7) instantons other than the one obtained by the
standard embedding. Motivated by the form of spin connection of GPP—BFK metric, we
take the following ansatz fd@pin7) connection:

Ajj=— (gsilnuek + Yé) €ijt, A= — ((X +Y)ek + %"/z)ek) €k, (3.1)
Ay =7 (pe* +8¢%), g = —Czt“e" ~Yé, (3.2)
Ag = —Z€, Ag7 = —(32)é8, (3.3)
Az = B2, Az =(X-Y)e, (3.4)

whereX (r), Y (r), Z(r) are unknown functions of the radial co-ordinateFor the spin
connection we have

1 h(r) h(r)

(r) h(r) 2502 (r) (r) 22(r)2 (3.5)
Since this ansatz satisfies the octonionic self-duality
Aap = %\I’abchw’a (36)

with respect to the Lie algebra indices, we can consistently regard the conngction
(1/4)G A,;, asSpin7) valued. We also note that the vielbein of radial directdmloes

not appear, hence if we think of the radial co-ordinate as a “time”, we are in the temporal
gauge.

Due to the identity obeyed by the component of the calibration four-form or the structure
constant of octonions, the curvatufe= dA + A A A satisfies the same self-duality as the
connection and hence it is alSpin7) valued (i.e., we can compute the curvature a4 if
wasSQ(8) connection) We obtain the following curvature:

Fl-jz—?< /—|—EY>€ Ae eijk+<?—?Y—1OZ e nel

1 3 2 h
+<}—1Y —2Y2> e nel + (—?Y—I—ZZZ) eSAekeijk, 3.7)
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/ / n 7 k
X +Y ~|—ﬁ(X—I—Y) e’ Ne€ijk

1

f

1 h 2 i i 1 2 2 i j
+= - ?(xw)—zz enel+ | S(X+Y)—2X"-2r% el el

8
1 A 2\ 8 . k
+ —2——2(X+Y)—2Z e® A eveji, (3.8)
8 8
1
ii:?<z + = Z)e Ae®+ Z@4Y —3X)e' e —i—XZZe /\e (3.9)
ki

1 / o
F == (Z’—{— g—Z) e7/\eke,'jk+Z(4Y —3X)e' Ae’
I f g

—XZ& Ael —XZE A ke (i # )) (3.10)

1/, W c (1 h »
Fa=—— (Y +=—Y)e'ne + (= —5Y—1022) B A ¢
7 A 2 g2

h < 1 RN
+ (—?Yﬁ—ZZ) €iji e’ Ak + (EY - YZ) €ijre’ A€k, (3.11)

1 / . . R
Fg=— <Z/ - g—z) e’ Nel +Z(AY —3X)eB Al — XZejjiel nef, (3.12)
P .

3 / ;
For=—7 (z/ + g_z) e" NP+ Z(X —4Y)) e Alt, (3.13)
8 k

3 / , , A 2
F7I-=? (Z’—|—g—Z> e’ N+ Z(y — X)eijre! A & —z@y — ) A, (3.14)
8

Fo=t(x Y+—(X Y))e' ne + i(X—Y)—sz2 kel Aek
7i—f e’ neé 2g2 €ijk e e
p . h )
+ ——(X—Y)+X2—Y2 cinel NeF+ [ S(X—Y)—6Z%2) B A,
2h ! g2
(3.15)

In the case of the Riemannian curvature which comes from the metric the symmetry
of four indices implies that the octonionic self-duality as a space—time two form follows
from that ofSQ(8) indices. However, for the Yang—Mills curvature the octonionic instanton
equation [9,18,19]:

*F=QAF, (3.16)

is independent of the self-duality @& with respect to the Lie algebra indices which only
implies that it isSpin(7) valued. Thanks to the cyclic symmetry 8f)2) indices in our
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ansatz, the octonionic self-duality of the curvature two-form is greatly reduced. We find the
following three independent conditions:

1 1 2 1

X +L-X+2X2— 2+ )X+ = +422=0,

7 + + <h+g2> +g2+

1 1 2 1
—Y’+L-Y~|—2Y2—<—+—>Y+——8ZZ=0,

f h g2 g2

1

?Z’+K'Z+(X—4Y)Z:O. (3.17)

4. Reduced solutions

Using the explicit form of the functiongandk in (2.17) and making the following change
of variables which is convenient for this special background of gravitational instanton

N R

x—rf(sx 3f>, @)
1/ 5,

y_ﬁ(gy 3f>, 4.2)
1

ZZESZ, (4.3)

we obtain the following system of first order ordinary differential equations:

d

rbx +2%x(Ex -1+ 42 =0, (4.9
d

ro by + 2% (6 = 1) - 8:2 =0, (4.5)
d 20

r 7+ (Ex — 46y + 562+ 3<f2 — 1z =0. (4.6)

Before considering solutions to the differential equations (4.4)—(4.6), let us first look at the
asymptotic behavior at infinity. In the region of the large radial co-ordinateglecting
the last term in (4.6) (or putting = 1), we obtain gradient flow equations &% = {¢ =

(¢x, &y, &€2)} with a metricnap = diag((1/2), 1, 4):

doa_ apdUE

—E4 = — 4.7

0t " EE (4.7)
wherer = Inr and the potential functioty is given by

U= 353 — 365 + 357 — &7 + 265 (6x — 46y +5). (4.8)

By counting the number of negative eigenvalues of the Hessian
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Table 1
Critical points of the potential functiodl and their Morse indices
Critical point Critical values Index
Py (1,1,0) 0
Py (1,0,0) 1
P3 (0,1,0) 1
Py (0,0,0) 2
5 (1/3,4/3, £1/3) 2
PE (5/11, 15/11, iJE/ll) 1
82U 2§X -1 0 4§Z
Hpp = 1 = 0 4y -2 —165z . (4.9)
082088

4tz —165; 4(x — 4y +5)

at the critical points o/, we find the list of the critical points and the Morse indices (see
Table 1). We can use one of these critical points as a boundary condition of the octonionic
Yang—Mills instantons and classify the solutions of (4.4)—(4.6) according to

Sol P;) := {afamily of solutions approaching # for r — oo}. (4.10)

If &2 = 0, we can neglect the last term of (4.6) in the whole region and we can find a
general solution:

_ 1 _ 1
S1m@d YT Isend

which belongs to the clasdok P1) for finite parameterga, b). When we take the limits of
parametersa, co), (00, b) and(oco, 00), the limiting solutions belong t&8ok P2), Sok P3)
andSol Py), respectively. Wheg;z # 0 it is difficult to find general solutions, which will
be discussed in more detail in Section 5, but we here present a special sol\SimF)
corresponding to the spin connection

fx =3 fr=—3+3f% Efz=-

Note that provided a solutio€y, &y, £7) € SoI(P5Jf6) there always exists a solution
(Ex, &y, —&2) € SoKPSfG) by the symmetry of equations.

The spin connection (4.12) yieldsSpin(7) connection, while as we will see shortly the
connection of (4.11) takes the value in a sub-Lie algeb@paf(7). In this sense (4.11) is a
reduced solution. Let us calculate the curvature two-f6rea (1/4)G? F,;, by substituting
(4.1) and (4.2) an& = 0 into (3.7)—(3.15). Defining the sub-generator&sf by

Ex (4.11)

Wi

(4.12)

Wl

si=1 (—Gﬁ + %EijkGflg) , (4.13)
T = % (GSi + %eijijk) = % (Gﬁ + %eijkG;];> , (4.14)

Ul = % (—G8i + %eijijk) , (4.15)
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we can rewrite the curvature into the following form;

F=S"F(Ex)+ T'F;(§y) + U'Ci, (4.16)
where the two-form&; (§4) (A = X, Y) andC; are given by
Fi(Ex) = fa <L’8 Ae + Eéijkej A €k> + gEAEijkej A ek + hAe7 Ae', 4.17)
with
_ 45 _ 464 S 2
fa= 322 84= 22 <$A 3/7)
4§A 2 5 2
hy=—2 Z_Zr?), 4.18
a=ta (st 557 @19
and
20 .1 )
Ci=g2 <—68 ne + Ee,;,kef A ek) . (4.19)

Itis easy to see that, 7! andU’ are mutually commutin§U(2) generators which satisfy
the relations

[Si, Sj] = —€jjk Sk, [Ti, Tj] = —€jjk Tk, [Ui, Uj] = —€jjk U*. (4.20)

Thus the solution (4.11) describes ®#(2)2 octonionic Yang—Mills instanton. When the
parametersa, b) take the special values, some curvature components vanish:

F;(&y) =0 for (a, 00), (4.21)
Fi(6x) =0 for (oo, b), (4.22)
Fi(kx) = Fi(§y) =0 for (oo, 00). (4.23)

The gauge group is then further reduce®td2)? andSU(2) in the case of (4.21) or (4.22)
and (4.23), respectively.

We now evaluate the Chern forms characterizing the topological nature of the solution
(4.11). The relevant closed forms are given by

1
=—TrFAF, 4.24
2 8r2 ( )

ca (MMEFAF)TrFAF)—2TtrFAFAFAF), (4.25)

1
12874
where Tr refers to the adjoint representatiorsti2)3. Sincec; is a four-form, it must be
integrated over a four-dimensional hypersurface in the quaternionic line bundle. A natural
choice is the fibeR*, which is specified by the orthonormal frare, ¢, ¢, ¢’}. Using
(4.11),(4.17) and (4.19), we obtain the formula

3\3 3!
/02= (E) ?UOISU(Z) Z 14, (4.26)

A=X,Y
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where
1% 4 1[0 d
IA——Z/Y; drr f gAhA—§ . drd—r

in the parameter regiom, b < m2. Sincef~1 = 0 atr = m andéx = &y = f = 1 for
r — oo, we havely = Iy = 1. Forcg the integration is to be evaluated over the total space
of the quaternionic line bundle. A similar calculation yields

(s2 7% — 263 ") (4.27)

/c <3>54v0| 25 Ia-—1 (4.28)
4=\ —= — s7 A —1IXY |» '

10) =4 Ay
where

3\° o0
IXY:_(Z) Z/ drr7f_2<3f§g3h3+2fAfBgAgB>
A#£BY™
© d
= [ o g (5r0ekeR - 6 Okeen 4 an) (4.29)

andIyy = 13 fora, b < m?.

5. Asymptotic expansion

As we have mentioned it is difficult to obtain a solution with = 0 in a closed form.
The only exceptional solution is given by the spin connection regarde®ps1&@) gauge
field. To investigate the existence of more general solutions let us look for a solution in a
form of formal power series. We first consider the exponent of the power series determined
by the gradient flow equation. Linearizing (4.7) around the critical pBintve have

d. - .
ESA = —HapBés, 61

whereH 4 3 represents thexd3 matrixn4€ He g evaluated aP;. To be specific, lety, Ao, . . .
be the positive eigenvalues &f and&4(P;) the critical values. Then, the gradient flow
approaching ta?; may be expanded in the form

A p\*2
Ea = Ea(P) +af (%) "t af <;) 4. (5.2)

for alarge radial co-ordinate. Here coefficietmfs a‘z“, ... are determined by the linearized
gradient flow equation (5.1) and b, ... are 3— index P;) free parameters. Recall that

the gradient flow gives an approximate solution, and hence the expansion (5.2) must be
corrected by the exact octonionic Yang—Mills equation. The correction comes from the last
term(f2 — 1)&z in (4.6), which is also expanded by using

2 i (@)um)/s_ 53)

r
n=0
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Now we make an ansatz of the formal power series which takes into account the asymptotic
behavior described above:

(o, oo o] oo
EAaREA(P) + ZZ Z "'(wkz’ilz'zlz . ..)af‘nlnz,__, k4+ni4+np+---#0,
k=0n1=0n,=0
(5.4)

wherew = (m/r)1%3, z1 = (a/r)*t,zo = (b/r)*2,.... This series will provide the
asymptotic expansion of the octonionic Yang—Mills instantosak P;) with totally 4 —
index P;) moduli parameters, if the parameter of the background metric is treated
as a moduli. In the following we illustrate this asymptotic expansion by concentrating
on the casesSolP;) and SolPp). Other cases can be analyzed in the same
manner.

(@)Sok Py ). The matrixH has one positive eigenvalae= (1/3)(7 + +/57), so that the
solution is written as the double power series:

oo X
Ea~Ea(Pg)+ DY w'al. n+k#0, (5.5)
n=0k=0

wherew = (m/r)1%3, z = (a/r)* and we have one free (moduli) parametén addition
to the background metric moduli. When we takeiy; = al; = af; = 0 as an initial
condition of the recursion relation, we find a solution

afy=3 (¥n>1),  others=0, (5.6)

which recovers the spin connection (4.12). More general solution with the additional moduli
parameter is obtained by using the series

1 oo 0
Ex ~ 3 + ZZ w" 2K, (5.7)
n=0k=1
1 5 o o0
by~ -3+ éfz + )Y w' by, (5.8)
n=0k=1
1 o0 o0
£y~ -3 + ZZ w”zkc,,k, (5.9)
n=0k=1

where the first coefficients amg1 = —(1/3)(9—+/57), bo1 = (1/3)(34++/57) andcoy = 1.
The higher coefficients are uniquely determined by the recursion formulae:

10 2 8 L
3” + Ak + é ank + écnk - 222 (apqan—p,k—q + Zcpqcn—p,k—q) =0,
p=0g=1

(5.10)
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10 10
(3”4—)»/(— §> bui — an— —prk

n k-1
- ZZZ (bqun—p,k—q - 4Cpqcn—p,k—q) =0, (5.11)
p=0g=1
1 4 10 n k1
éank - §bnk + (En + kk) Cnk — l;);cpq (anfp,qu - 4bn7p,k7q) =0.

(5.12)

We leave the issue of convergence of this formal solution for future research. This is im-
portant for a global structure of the moduli space such as a compactification.

(b) SolP1). The matrix H has degenerated eigenvalues, iXg.,= A2 = A3 = 2.
In order to unambiguously determine the coefficierﬁ;mns of power series, we first
perturb the octonionic Yang—Mills equation so that the correspondihgs non-degenerate
eigenvalues and after all calculations we take off the perturbation. If we use the metric
nap = diag((1/2)(1 — €1), 1 — €2, 4) with small parameters; ande; instead ofy4p =
diag(1/2, 1, 4), then the positive eigenvaluesBfarer; = 2(1+€1), Ao = 2(1+€2), A3 =
2. Eqgs. (4.4) and (4.5) are replaced by

d
b+ hbxEx - D+ 2082 =0, (5.13)
d 2
ra&/ + A2by (§y — 1) — 4267 =0, (5.14)
while (4.6) for the Z-component remains unchanged. After taking the §mit- 0 (| =

1, 2), the solution in a form of power series is given by (5.4) with= (m/r)1%3, z; =
(a/r)?, z2 = (b/r)? andzz = (c/r)2. The explicit lower terms are as follows:

2 n=1
y ®* —— + Zz3b +- (5.16)
'S}
é,.:Z %ZZSC}’!—F"' 9 (517)

where the coefficients are determined by the recursion formulae

n—1

7D (@kdn—k + 2ckCn i), (5.18)
k=1

1

a, =
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n—1
1
b, = _ 1Z(akan—k —Acken—i), (519)
k=1
n—1
Ch = o — < ck(an—k — 4bu—r), 5.20
2(n — 1)1;1 ( )

with the first termsz; = b1 = 0 andcg = 1. If we imposec = 0, the above expansion
reproduces the exact solution (4.11).

6. Discussion

Firstly we remark the relationship between the asymptotic flow (4.7) and the Chern—
Simons theory over the squashed seven sphera similar relation in various dimensions
has been discussed in [20]. The gravitational instanton metric (2.1) has the conformally
product form in a large radial co-ordinate region,

ds? — dr?+ 3r2 ds?

L (6.1)
where d; is theSp(2) - Sp(1)-invariant metric onS”’:
ds?, = du® + §sifu - 27 + §(0i — A% (6.2)

Now (4.7) may be regarded as the gradient flow of the Chern-Simons thecsy as
follows. Let us define the action by

CS{A]:/A\fJATr<A/\dA+%A/\AAA), (6.3)
S7

where A stands forSpin(7) connection andl a closed four-form or$” induced by the
calibration four-form on the total space wisipin(7) holonomy. It is explicitly written as

~

G=0 A02A03A08 -0 A62 A3 A08+02A08A0%A08

N AN N AN LN YN RN

+02 A3 AN02 A0+ 01 A0 ABL A B3, (6.4)
using the orthonormal frame of the metric (6.2)

o' = Lsinu- %, 95=Ji§(a,-—A,'), 08 = dpu. (6.5)

The gradient flow of the functional (6.3) obeys a differential equation

d .
gA=—xWAp), (6.6)

which reproduces the flow (4.7) if we use the ansatz (3.1)—(3.4) and (4.1)—(4.3) wth.
The critical points ofCHA], i.e., the solutions oft A F = 0, then reduce to those of
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the potential functio/, which does not mean flat-connections as in the three-dimensional
Chern-Simons theory.
The energy—momentum tensor of the Yang—Mills field is
TIM = Tr (Fu F)) — 32,0 Tr (Fuc F™) . (6.7)

Ay

For the octonionic instantons the energy—momentum tefgodoes not vanish in general

and this presents a sharp contrast with the case of four-dimensional instantons. We can prove
that (anti-) self-duality of the curvature implig&™ = 0 using a property of the totally
anti-symmetric tensat,,,,+ in four dimensions. Hence a four-dimensional instanton does
not disturb the Ricci flatness of the background metric. However the octonionic self-duality

is not sufficient for leading a vanishing energy—momentum tensor and this causes an issue
of the back reaction of matter to gravity. Non-vanishing total energy—momentum tensor
is inconsistent with the Ricci flatness of the space—time. Actually a similar issue is en-
countered, if we embed a four-dimensional instanton in higher dimensions. (Note that this
gives a special case of higher dimensional instanton.) In such a case, though the tangent
components of’,, along the four-dimensional submanifold on which the instanton lives
vanish as we argued above, the instanton produces a non-vanishing contribution to the
(d — 4)-dimensional normal components of the energy—momentum tensor. One of the ways
to resolve this problem is to embed the solution to a consistent background of superstrings.
Based on a four-dimensional instanton, one can construct several five brane solutions which
has a dilatorp and an anti-symmetric tensor fielkl = dB in addition to the Yang—Mills

field A [21-24]. In these solutions we can think of four-dimensional instanton as a source
of configuration in the transverse space. Due to a coupling

dH =Tr(RAR—F A F), (6.8)

there are contributions fromp and B which balances the total energy—momentum ten-
sor. This should be so, since this provides a consistent background for superstrings. From
this example we believe our solutions should be promoted to a consistent background of
supermembrane or eleven-dimensional super gravity [12,25,26].
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Appendix A. Quaternionic Kéhler manifold

The holonomy group of a connected and orientabldithensional Riemannian manifold
is a subgroup o65Q(4n). If the holonomy group is reduced ®pn) - Sp1) = Spn) x
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(Sp1)/Z2), the manifold is called quaternionic Kahler [17]. (Caution: a quaternionic Kahler
manifold is not necessarily Kéhler!) The quaternionic Kahler manifold is known as a target
space geometry d¥ = 2 supergravity in four dimensions. (If we considér= 2 global
SUSY, therSp(1) part is trivial and the manifold is hyperKahler.) It also provides a natural
arena for a higher dimensional generalization of instanton equation. Note thatamhen

1 the holonomy of quaternionic Kéhler manifold $§(1) x (Sp(1)/Z2) and hence any
four-dimensional orientable manifold is quaternionic Kéhler. This may be compared with
the fact any two-dimensional orientable manifold is Kéhler dus@®) = U (1).

On the frame bundle of a quaternionic Kahler manifold the gauge transformation among
local co-ordinate patches is Bp(n) - Sp1). We can define a quaternionic line bundle as
an associated bundle to the frame bundle as follows. Each fiber of quaternionic line bundle
is the space of quaterniol i.e.,R* as a vector space. On quaternions there is a natural
action ofSp(1) = SU(2). Thus we can define the gauge transformation of the fiber using
the Sp(1) part of the holonomy group. That iISpin) part acts trivially on the quaternionic
line bundle. This especially implies that quaternionic line bundle on hyperK&hler manifold
is trivial. It might be helpful to note that this construction is a quaternionic analogue of
complex line bundle (or the canonicél(1) bundle) on a Kéhler manifold that h&s(n)
holonomy.

If we take a four-dimensional spin manifold, each factor ofSp(1) is identified as
Spin3) that defines the spinor bundi (M). Hence, the complexified spinor bundle on
four-dimensional manifold is regarded as a quaternionic line bundle. It is known that the
total space of spinor bundle on a four-dimensional manifold possesses a IS @)
structure.

Appendix B. Standard embedding ofSpin(7) connection

We show that the octonionic self-duality of the spin connectiowith respect to the
(local frame) Lie algebra indices implies the octonionic self-duality of the curvatute
dow + o A w with respect to the space time form indices. kgl = —wp, be the spin
connection one-form. In eight dimensionsis SQ(8) valued in general. (We take the
Euclidean signature in the following.) But if we impose the octonionic self-duality

Wap = %“pabcdwaj» (Bl)
the spin connectiom can be regarded &pin7) valued. The totally anti-symmetric tensor

W,cq IS related to the structure constantg,. of the octonion algebra as follows [27]:

1
Wabe8 = Capes Wabea = aeabcdpqrcpqr, (B-Z)

where the duality is taken in seven dimensions. In terms of a local frame (vieljewe
can define a space—time self-dual four-form

1 ‘
Q= E\Dabcde“ Ael Aef Ael. (B.3)
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On an eight-dimensional manifold 8pin7) holonomy, the four-formy is closed:
d2 =0, (B.4)

A crutial point is the following identity which follows from the property of the octonionic
structure constants,,. [14,27],

W g W 8M = (5{ 58 — 5 55) 8" + ((fgh) : cyclic)

bc “a

— ((xyaffaf + s wlEshy + ((igh : cyclic)) . (B.5)

Due to the symmetry of the Riemann curvature tensor the self-duality of form indices
follows form that of Lie algebra indices. Thus it is enough to show that

Rab = %\IjabcdRCds (BG)
where we have suppressed the two-form indices. In the defining relation
Rap = dwap + wae A @cp, (B.7)

the self-duality of the second term is non-trivial. Using the identity (B.5), we can show the
second term is indeed self-dual. Thus the curvature two form constructed fBpim@a)
valued spin connectiom satisfies the octonionic instanton equation.
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